
Chapter 9

Red-Black Trees

In this chapter, we present red-black trees, a version of binary search trees
with logarithmic height. Red-black trees are one of the most widely used
data structures. They appear as the primary search structure in many
library implementations, including the Java Collections Framework and
several implementations of the C++ Standard Template Library. They are
also used within the Linux operating system kernel. There are several
reasons for the popularity of red-black trees:

1. A red-black tree storing n values has height at most 2logn.

2. The add(x) and remove(x) operations on a red-black tree run in
O(logn) worst-case time.

3. The amortized number of rotations performed during an add(x) or
remove(x) operation is constant.

The first two of these properties already put red-black trees ahead of
skiplists, treaps, and scapegoat trees. Skiplists and treaps rely on ran-
domization and theirO(logn) running times are only expected. Scapegoat
trees have a guaranteed bound on their height, but add(x) and remove(x)
only run in O(logn) amortized time. The third property is just icing on
the cake. It tells us that that the time needed to add or remove an element
x is dwarfed by the time it takes to find x.1

However, the nice properties of red-black trees come with a price: im-
plementation complexity. Maintaining a bound of 2logn on the height

1Note that skiplists and treaps also have this property in the expected sense. See Exer-
cises 4.6 and 7.5.

185

§9.1 Red-Black Trees

Figure 9.1: A 2-4 tree of height 3.

is not easy. It requires a careful analysis of a number of cases. We must
ensure that the implementation does exactly the right thing in each case.
One misplaced rotation or change of colour produces a bug that can be
very difficult to understand and track down.

Rather than jumping directly into the implementation of red-black
trees, we will first provide some background on a related data structure:
2-4 trees. This will give some insight into how red-black trees were dis-
covered and why efficiently maintaining them is even possible.

9.1 2-4 Trees

A 2-4 tree is a rooted tree with the following properties:

Property 9.1 (height). All leaves have the same depth.

Property 9.2 (degree). Every internal node has 2, 3, or 4 children.

An example of a 2-4 tree is shown in Figure 9.1. The properties of 2-4
trees imply that their height is logarithmic in the number of leaves:

Lemma 9.1. A 2-4 tree with n leaves has height at most logn.

Proof. The lower-bound of 2 on the number of children of an internal
node implies that, if the height of a 2-4 tree is h, then it has at least 2h

leaves. In other words,
n ≥ 2h .

Taking logarithms on both sides of this inequality gives h ≤ logn.

186

2-4 Trees §9.1

9.1.1 Adding a Leaf

Adding a leaf to a 2-4 tree is easy (see Figure 9.2). If we want to add a
leaf u as the child of some node w on the second-last level, then we simply
make u a child of w. This certainly maintains the height property, but
could violate the degree property; if w had four children prior to adding
u, then w now has five children. In this case, we split w into two nodes,
w and w’, having two and three children, respectively. But now w’ has no
parent, so we recursively make w’ a child of w’s parent. Again, this may
cause w’s parent to have too many children in which case we split it. This
process goes on until we reach a node that has fewer than four children,
or until we split the root, r, into two nodes r and r′ . In the latter case,
we make a new root that has r and r′ as children. This simultaneously
increases the depth of all leaves and so maintains the height property.

Since the height of the 2-4 tree is never more than logn, the process of
adding a leaf finishes after at most logn steps.

9.1.2 Removing a Leaf

Removing a leaf from a 2-4 tree is a little more tricky (see Figure 9.3). To
remove a leaf u from its parent w, we just remove it. If w had only two
children prior to the removal of u, then w is left with only one child and
violates the degree property.

To correct this, we look at w’s sibling, w′ . The node w′ is sure to exist
since w’s parent had at least two children. If w′ has three or four children,
then we take one of these children from w′ and give it to w. Now w has two
children and w′ has two or three children and we are done.

On the other hand, if w′ has only two children, then we merge w and
w′ into a single node, w, that has three children. Next we recursively re-
move w′ from the parent of w′ . This process ends when we reach a node,
u, where u or its sibling has more than two children, or when we reach
the root. In the latter case, if the root is left with only one child, then
we delete the root and make its child the new root. Again, this simul-
taneously decreases the height of every leaf and therefore maintains the
height property.

Again, since the height of the tree is never more than logn, the process

187

§9.1 Red-Black Trees

w

w

u

u

w w′

Figure 9.2: Adding a leaf to a 2-4 Tree. This process stops after one split because
w.parent has a degree of less than 4 before the addition.

188

2-4 Trees §9.1

u

Figure 9.3: Removing a leaf from a 2-4 Tree. This process goes all the way to the
root because each of u’s ancestors and their siblings have only two children.

189

§9.2 Red-Black Trees

of removing a leaf finishes after at most logn steps.

9.2 RedBlackTree: A Simulated 2-4 Tree

A red-black tree is a binary search tree in which each node, u, has a colour
which is either red or black. Red is represented by the value 0 and black
by the value 1.

RedBlackTree
class Node<T> extends BSTNode<Node<T>,T> {

byte colour;
}

Before and after any operation on a red-black tree, the following two
properties are satisfied. Each property is defined both in terms of the
colours red and black, and in terms of the numeric values 0 and 1.

Property 9.3 (black-height). There are the same number of black nodes
on every root to leaf path. (The sum of the colours on any root to leaf path
is the same.)

Property 9.4 (no-red-edge). No two red nodes are adjacent. (For any node
u, except the root, u.colour+ u.parent.colour ≥ 1.)

Notice that we can always colour the root, r, of a red-black tree black
without violating either of these two properties, so we will assume that
the root is black, and the algorithms for updating a red-black tree will
maintain this. Another trick that simplifies red-black trees is to treat the
external nodes (represented by nil) as black nodes. This way, every real
node, u, of a red-black tree has exactly two children, each with a well-
defined colour. An example of a red-black tree is shown in Figure 9.4.

9.2.1 Red-Black Trees and 2-4 Trees

At first it might seem surprising that a red-black tree can be efficiently
updated to maintain the black-height and no-red-edge properties, and
it seems unusual to even consider these as useful properties. However,

190

RedBlackTree: A Simulated 2-4 Tree §9.2

red node

black node

Figure 9.4: An example of a red-black tree with black-height 3. External (nil)
nodes are drawn as squares.

red-black trees were designed to be an efficient simulation of 2-4 trees as
binary trees.

Refer to Figure 9.5. Consider any red-black tree, T , having n nodes
and perform the following transformation: Remove each red node u and
connect u’s two children directly to the (black) parent of u. After this
transformation we are left with a tree T ′ having only black nodes.

Every internal node in T ′ has two, three, or four children: A black
node that started out with two black children will still have two black
children after this transformation. A black node that started out with
one red and one black child will have three children after this transfor-
mation. A black node that started out with two red children will have
four children after this transformation. Furthermore, the black-height
property now guarantees that every root-to-leaf path in T ′ has the same
length. In other words, T ′ is a 2-4 tree!

The 2-4 tree T ′ has n + 1 leaves that correspond to the n + 1 external
nodes of the red-black tree. Therefore, this tree has height at most log(n+
1). Now, every root to leaf path in the 2-4 tree corresponds to a path
from the root of the red-black tree T to an external node. The first and
last node in this path are black and at most one out of every two internal
nodes is red, so this path has at most log(n + 1) black nodes and at most
log(n+ 1)− 1 red nodes. Therefore, the longest path from the root to any
internal node in T is at most

2log(n+ 1)− 2 ≤ 2logn ,

for any n ≥ 1. This proves the most important property of red-black trees:

191

§9.2 Red-Black Trees

Figure 9.5: Every red-black tree has a corresponding 2-4 tree.

Lemma 9.2. The height of red-black tree with n nodes is at most 2logn.

Now that we have seen the relationship between 2-4 trees and red-
black trees, it is not hard to believe that we can efficiently maintain a
red-black tree while adding and removing elements.

We have already seen that adding an element in a BinarySearchTree
can be done by adding a new leaf. Therefore, to implement add(x) in a
red-black tree we need a method of simulating splitting a node with five
children in a 2-4 tree. A 2-4 tree node with five children is represented
by a black node that has two red children, one of which also has a red
child. We can “split” this node by colouring it red and colouring its two
children black. An example of this is shown in Figure 9.6.

Similarly, implementing remove(x) requires a method of merging two
nodes and borrowing a child from a sibling. Merging two nodes is the in-
verse of a split (shown in Figure 9.6), and involves colouring two (black)
siblings red and colouring their (red) parent black. Borrowing from a sib-
ling is the most complicated of the procedures and involves both rotations
and recolouring nodes.

Of course, during all of this we must still maintain the no-red-edge

192

RedBlackTree: A Simulated 2-4 Tree §9.2

w

w

u

w w′

u

Figure 9.6: Simulating a 2-4 tree split operation during an addition in a red-black
tree. (This simulates the 2-4 tree addition shown in Figure 9.2.)

193

§9.2 Red-Black Trees

property and the black-height property. While it is no longer surprising
that this can be done, there are a large number of cases that have to be
considered if we try to do a direct simulation of a 2-4 tree by a red-black
tree. At some point, it just becomes simpler to disregard the underlying
2-4 tree and work directly towards maintaining the properties of the red-
black tree.

9.2.2 Left-Leaning Red-Black Trees

No single definition of red-black trees exists. Rather, there is a family
of structures that manage to maintain the black-height and no-red-edge
properties during add(x) and remove(x) operations. Different structures
do this in different ways. Here, we implement a data structure that we
call a RedBlackTree. This structure implements a particular variant of
red-black trees that satisfies an additional property:

Property 9.5 (left-leaning). At any node u, if u.left is black, then u.right
is black.

Note that the red-black tree shown in Figure 9.4 does not satisfy the
left-leaning property; it is violated by the parent of the red node in the
rightmost path.

The reason for maintaining the left-leaning property is that it reduces
the number of cases encountered when updating the tree during add(x)
and remove(x) operations. In terms of 2-4 trees, it implies that every 2-4
tree has a unique representation: A node of degree two becomes a black
node with two black children. A node of degree three becomes a black
node whose left child is red and whose right child is black. A node of
degree four becomes a black node with two red children.

Before we describe the implementation of add(x) and remove(x) in de-
tail, we first present some simple subroutines used by these methods that
are illustrated in Figure 9.7. The first two subroutines are for manipulat-
ing colours while preserving the black-height property. The pushBlack(u)
method takes as input a black node u that has two red children and
colours u red and its two children black. The pullBlack(u) method re-
verses this operation:

194

RedBlackTree: A Simulated 2-4 Tree §9.2

u

u

pushBlack(u)
⇓

u

u

pullBlack(u)
⇓

flipLeft(u)
⇓

u

u

flipRight(u)
⇓

u

u

Figure 9.7: Flips, pulls and pushes

RedBlackTree
void pushBlack(Node<T> u) {

u.colour--;
u.left.colour++;
u.right.colour++;

}
void pullBlack(Node<T> u) {

u.colour++;
u.left.colour--;
u.right.colour--;

}

The flipLeft(u) method swaps the colours of u and u.right and then
performs a left rotation at u. This method reverses the colours of these
two nodes as well as their parent-child relationship:

RedBlackTree
void flipLeft(Node<T> u) {

swapColors(u, u.right);
rotateLeft(u);

}

The flipLeft(u) operation is especially useful in restoring the left-
leaning property at a node u that violates it (because u.left is black and
u.right is red). In this special case, we can be assured that this oper-
ation preserves both the black-height and no-red-edge properties. The

195

§9.2 Red-Black Trees

flipRight(u) operation is symmetric with flipLeft(u), when the roles
of left and right are reversed.

RedBlackTree
void flipRight(Node<T> u) {

swapColors(u, u.left);
rotateRight(u);

}

9.2.3 Addition

To implement add(x) in a RedBlackTree, we perform a standard Binary-
SearchTree insertion to add a new leaf, u, with u.x = x and set u.colour =
red. Note that this does not change the black height of any node, so it
does not violate the black-height property. It may, however, violate the
left-leaning property (if u is the right child of its parent), and it may
violate the no-red-edge property (if u’s parent is red). To restore these
properties, we call the method addFixup(u).

RedBlackTree
boolean add(T x) {

Node<T> u = newNode(x);
u.colour = red;
boolean added = add(u);
if (added)

addFixup(u);
return added;

}

Illustrated in Figure 9.8, the addFixup(u) method takes as input a
node u whose colour is red and which may violate the no-red-edge prop-
erty and/or the left-leaning property. The following discussion is proba-
bly impossible to follow without referring to Figure 9.8 or recreating it on
a piece of paper. Indeed, the reader may wish to study this figure before
continuing.

If u is the root of the tree, then we can colour u black to restore both
properties. If u’s sibling is also red, then u’s parent must be black, so both
the left-leaning and no-red-edge properties already hold.

196

RedBlackTree: A Simulated 2-4 Tree §9.2

u

u

u

u

w

u

w

u

w

u

w

u

w

u

w

u

new u = g

flipLeft(w) ; u = w

u

w.colour

flipRight(g) pushBlack(g)

g g

g.right.colour

u.parent.left.colour

return

return

return

w

www

w

u

w

u

new u = g

pushBlack(g)

g

g

Figure 9.8: A single round in the process of fixing Property 2 after an insertion.

197

§9.2 Red-Black Trees

Otherwise, we first determine if u’s parent, w, violates the left-leaning
property and, if so, perform a flipLeft(w) operation and set u = w. This
leaves us in a well-defined state: u is the left child of its parent, w, so w
now satisfies the left-leaning property. All that remains is to ensure the
no-red-edge property at u. We only have to worry about the case in which
w is red, since otherwise u already satisfies the no-red-edge property.

Since we are not done yet, u is red and w is red. The no-red-edge prop-
erty (which is only violated by u and not by w) implies that u’s grand-
parent g exists and is black. If g’s right child is red, then the left-leaning
property ensures that both g’s children are red, and a call to pushBlack(g)
makes g red and w black. This restores the no-red-edge property at u, but
may cause it to be violated at g, so the whole process starts over with
u = g.

If g’s right child is black, then a call to flipRight(g) makes w the
(black) parent of g and gives w two red children, u and g. This ensures
that u satisfies the no-red-edge property and g satisfies the left-leaning
property. In this case we can stop.

RedBlackTree
void addFixup(Node<T> u) {

while (u.colour == red) {
if (u == r) { // u is the root - done
u.colour = black;
return;

}
Node<T> w = u.parent;
if (w.left.colour == black) { // ensure left-leaning
flipLeft(w);
u = w;
w = u.parent;

}
if (w.colour == black)
return; // no red-red edge = done

Node<T> g = w.parent; // grandparent of u
if (g.right.colour == black) {
flipRight(g);
return;

} else {
pushBlack(g);

198

RedBlackTree: A Simulated 2-4 Tree §9.2

u = g;
}

}
}

The insertFixup(u) method takes constant time per iteration and
each iteration either finishes or moves u closer to the root. Therefore,
the insertFixup(u) method finishes after O(logn) iterations in O(logn)
time.

9.2.4 Removal

The remove(x) operation in a RedBlackTree is the most complicated to
implement, and this is true of all known red-black tree variants. Just
like the remove(x) operation in a BinarySearchTree, this operation boils
down to finding a node w with only one child, u, and splicing w out of the
tree by having w.parent adopt u.

The problem with this is that, if w is black, then the black-height
property will now be violated at w.parent. We may avoid this prob-
lem, temporarily, by adding w.colour to u.colour. Of course, this in-
troduces two other problems: (1) if u and w both started out black, then
u.colour + w.colour = 2 (double black), which is an invalid colour. If
w was red, then it is replaced by a black node u, which may violate the
left-leaning property at u.parent. Both of these problems can be resolved
with a call to the removeFixup(u) method.

RedBlackTree
boolean remove(T x) {

Node<T> u = findLast(x);
if (u == nil || compare(u.x, x) != 0)

return false;
Node<T> w = u.right;
if (w == nil) {

w = u;
u = w.left;

} else {
while (w.left != nil)
w = w.left;

199

§9.2 Red-Black Trees

u.x = w.x;
u = w.right;

}
splice(w);
u.colour += w.colour;
u.parent = w.parent;
removeFixup(u);
return true;

}

The removeFixup(u) method takes as its input a node u whose colour
is black (1) or double-black (2). If u is double-black, then removeFixup(u)
performs a series of rotations and recolouring operations that move the
double-black node up the tree until it can be eliminated. During this
process, the node u changes until, at the end of this process, u refers to
the root of the subtree that has been changed. The root of this subtree
may have changed colour. In particular, it may have gone from red to
black, so the removeFixup(u) method finishes by checking if u’s parent
violates the left-leaning property and, if so, fixing it.

RedBlackTree
void removeFixup(Node<T> u) {

while (u.colour > black) {
if (u == r) {
u.colour = black;

} else if (u.parent.left.colour == red) {
u = removeFixupCase1(u);

} else if (u == u.parent.left) {
u = removeFixupCase2(u);

} else {
u = removeFixupCase3(u);

}
}
if (u != r) { // restore left-leaning property if needed

Node<T> w = u.parent;
if (w.right.colour == red && w.left.colour == black) {
flipLeft(w);

}
}

200

RedBlackTree: A Simulated 2-4 Tree §9.2

}

The removeFixup(u) method is illustrated in Figure 9.9. Again, the
following text will be difficult, if not impossible, to follow without refer-
ring to Figure 9.9. Each iteration of the loop in removeFixup(u) processes
the double-black node u, based on one of four cases:
Case 0: u is the root. This is the easiest case to treat. We recolour u to be
black (this does not violate any of the red-black tree properties).
Case 1: u’s sibling, v, is red. In this case, u’s sibling is the left child of
its parent, w (by the left-leaning property). We perform a right-flip at w
and then proceed to the next iteration. Note that this action causes w’s
parent to violate the left-leaning property and the depth of u to increase.
However, it also implies that the next iteration will be in Case 3 with w
coloured red. When examining Case 3 below, we will see that the process
will stop during the next iteration.

RedBlackTree
Node<T> removeFixupCase1(Node<T> u) {

flipRight(u.parent);
return u;

}

Case 2: u’s sibling, v, is black, and u is the left child of its parent, w. In
this case, we call pullBlack(w), making u black, v red, and darkening the
colour of w to black or double-black. At this point, w does not satisfy the
left-leaning property, so we call flipLeft(w) to fix this.

At this point, w is red and v is the root of the subtree with which we
started. We need to check if w causes the no-red-edge property to be vi-
olated. We do this by inspecting w’s right child, q. If q is black, then w
satisfies the no-red-edge property and we can continue the next iteration
with u = v.

Otherwise (q is red), so both the no-red-edge property and the left-
leaning properties are violated at q and w, respectively. The left-leaning
property is restored with a call to rotateLeft(w), but the no-red-edge
property is still violated. At this point, q is the left child of v, w is the
left child of q, q and w are both red, and v is black or double-black. A
flipRight(v) makes q the parent of both v and w. Following this up by a

201

§9.2 Red-Black Trees

new u

u u

w

u

pullBlack(w) pullBlack(w)

flipLeft(w) flipRight(w)

u

w

uv v

v

v

v

v

u

u

u

u

u

w

w

w

w

w

q

q

q

q

q

q.colour

rotateLeft(w)

flipRight(v)

pushBlack(q)

v

q

v

v

v

v

v

w

w

w

w

w

w

w

q

q

q

q

q.colour

rotateRight(w)

flipLeft(v)

pushBlack(q)

v

v

v

q q

q

w

ww

u

u u

u u

u

u

u

v.left.colour

flipLeft(v)

w (new u)

q

w

u

pushBlack(v)

v (new u)

w

w

flipRight(w)

v.right.colour

v

u

w

q

v

u

w

q

vu

w

q

flipLeft(v)

vv

removeFixupCase1(u)removeFixupCase3(u)removeFixupCase2(u)

Figure 9.9: A single round in the process of eliminating a double-black node after
a removal.

202

RedBlackTree: A Simulated 2-4 Tree §9.2

pushBlack(q) makes both v and w black and sets the colour of q back to
the original colour of w.

At this point, the double-black node is has been eliminated and the
no-red-edge and black-height properties are reestablished. Only one pos-
sible problem remains: the right child of v may be red, in which case the
left-leaning property would be violated. We check this and perform a
flipLeft(v) to correct it if necessary.

RedBlackTree
Node<T> removeFixupCase2(Node<T> u) {

Node<T> w = u.parent;
Node<T> v = w.right;
pullBlack(w); // w.left
flipLeft(w); // w is now red
Node<T> q = w.right;
if (q.colour == red) { // q-w is red-red

rotateLeft(w);
flipRight(v);
pushBlack(q);
if (v.right.colour == red)
flipLeft(v);

return q;
} else {

return v;
}

}

Case 3: u’s sibling is black and u is the right child of its parent, w. This
case is symmetric to Case 2 and is handled mostly the same way. The only
differences come from the fact that the left-leaning property is asymmet-
ric, so it requires different handling.

As before, we begin with a call to pullBlack(w), which makes v red
and u black. A call to flipRight(w) promotes v to the root of the subtree.
At this point w is red, and the code branches two ways depending on the
colour of w’s left child, q.

If q is red, then the code finishes up exactly the same way as Case 2
does, but is even simpler since there is no danger of v not satisfying the
left-leaning property.

203

§9.2 Red-Black Trees

The more complicated case occurs when q is black. In this case, we
examine the colour of v’s left child. If it is red, then v has two red children
and its extra black can be pushed down with a call to pushBlack(v). At
this point, v now has w’s original colour, and we are done.

If v’s left child is black, then v violates the left-leaning property, and
we restore this with a call to flipLeft(v). We then return the node v so
that the next iteration of removeFixup(u) then continues with u = v.

RedBlackTree
Node<T> removeFixupCase3(Node<T> u) {

Node<T> w = u.parent;
Node<T> v = w.left;
pullBlack(w);
flipRight(w); // w is now red
Node<T> q = w.left;
if (q.colour == red) { // q-w is red-red

rotateRight(w);
flipLeft(v);
pushBlack(q);
return q;

} else {
if (v.left.colour == red) {
pushBlack(v); // both v’s children are red
return v;

} else { // ensure left-leaning
flipLeft(v);
return w;

}
}

}

Each iteration of removeFixup(u) takes constant time. Cases 2 and 3
either finish or move u closer to the root of the tree. Case 0 (where u
is the root) always terminates and Case 1 leads immediately to Case 3,
which also terminates. Since the height of the tree is at most 2logn, we
conclude that there are at most O(logn) iterations of removeFixup(u), so
removeFixup(u) runs in O(logn) time.

204

Summary §9.3

9.3 Summary

The following theorem summarizes the performance of the RedBlack-
Tree data structure:

Theorem 9.1. A RedBlackTree implements the SSet interface and supports
the operations add(x), remove(x), and find(x) inO(logn) worst-case time per
operation.

Not included in the above theorem is the following extra bonus:

Theorem 9.2. Beginning with an empty RedBlackTree, any sequence of m
add(x) and remove(x) operations results in a total of O(m) time spent during
all calls addFixup(u) and removeFixup(u).

We only sketch a proof of Theorem 9.2. By comparing addFixup(u)
and removeFixup(u) with the algorithms for adding or removing a leaf
in a 2-4 tree, we can convince ourselves that this property is inherited
from a 2-4 tree. In particular, if we can show that the total time spent
splitting, merging, and borrowing in a 2-4 tree is O(m), then this implies
Theorem 9.2.

The proof of this theorem for 2-4 trees uses the potential method of
amortized analysis.2 Define the potential of an internal node u in a 2-4
tree as

Φ(u) =

1 if u has 2 children
0 if u has 3 children
3 if u has 4 children

and the potential of a 2-4 tree as the sum of the potentials of its nodes.
When a split occurs, it is because a node with four children becomes two
nodes, with two and three children. This means that the overall potential
drops by 3−1−0 = 2. When a merge occurs, two nodes that used to have
two children are replaced by one node with three children. The result is
a drop in potential of 2 − 0 = 2. Therefore, for every split or merge, the
potential decreases by two.

Next notice that, if we ignore splitting and merging of nodes, there are
only a constant number of nodes whose number of children is changed by

2See the proofs of Lemma 2.2 and Lemma 3.1 for other applications of the potential
method.

205

§9.4 Red-Black Trees

the addition or removal of a leaf. When adding a node, one node has its
number of children increase by one, increasing the potential by at most
three. During the removal of a leaf, one node has its number of children
decrease by one, increasing the potential by at most one, and two nodes
may be involved in a borrowing operation, increasing their total potential
by at most one.

To summarize, each merge and split causes the potential to drop by
at least two. Ignoring merging and splitting, each addition or removal
causes the potential to rise by at most three, and the potential is always
non-negative. Therefore, the number of splits and merges caused by m
additions or removals on an initially empty tree is at most 3m/2. Theo-
rem 9.2 is a consequence of this analysis and the correspondence between
2-4 trees and red-black trees.

9.4 Discussion and Exercises

Red-black trees were first introduced by Guibas and Sedgewick [38]. De-
spite their high implementation complexity they are found in some of
the most commonly used libraries and applications. Most algorithms and
data structures textbooks discuss some variant of red-black trees.

Andersson [6] describes a left-leaning version of balanced trees that is
similar to red-black trees but has the additional constraint that any node
has at most one red child. This implies that these trees simulate 2-3 trees
rather than 2-4 trees. They are significantly simpler, though, than the
RedBlackTree structure presented in this chapter.

Sedgewick [66] describes two versions of left-leaning red-black trees.
These use recursion along with a simulation of top-down splitting and
merging in 2-4 trees. The combination of these two techniques makes for
particularly short and elegant code.

A related, and older, data structure is the AVL tree [3]. AVL trees
are height-balanced: At each node u, the height of the subtree rooted at
u.left and the subtree rooted at u.right differ by at most one. It follows
immediately that, if F(h) is the minimum number of leaves in a tree of

206

Discussion and Exercises §9.4

height h, then F(h) obeys the Fibonacci recurrence

F(h) = F(h− 1) +F(h− 2)

with base cases F(0) = 1 and F(1) = 1. This means F(h) is approximately
ϕh/
√

5, where ϕ = (1 +
√

5)/2 ≈ 1.61803399 is the golden ratio. (More
precisely, |ϕh/√5 − F(h)| ≤ 1/2.) Arguing as in the proof of Lemma 9.1,
this implies

h ≤ logϕ n ≈ 1.440420088logn ,

so AVL trees have smaller height than red-black trees. The height balanc-
ing can be maintained during add(x) and remove(x) operations by walk-
ing back up the path to the root and performing a rebalancing operation
at each node u where the height of u’s left and right subtrees differ by two.
See Figure 9.10.

Andersson’s variant of red-black trees, Sedgewick’s variant of red-
black trees, and AVL trees are all simpler to implement than the Red-
BlackTree structure defined here. Unfortunately, none of them can guar-
antee that the amortized time spent rebalancing is O(1) per update. In
particular, there is no analogue of Theorem 9.2 for those structures.

Exercise 9.1. Illustrate the 2-4 tree that corresponds to the RedBlackTree
in Figure 9.11.

Exercise 9.2. Illustrate the addition of 13, then 3.5, then 3.3 on the Red-
BlackTree in Figure 9.11.

Exercise 9.3. Illustrate the removal of 11, then 9, then 5 on the RedBlack-
Tree in Figure 9.11.

Exercise 9.4. Show that, for arbitrarily large values of n, there are red-
black trees with n nodes that have height 2logn−O(1).

Exercise 9.5. Consider the operations pushBlack(u) and pullBlack(u).
What do these operations do to the underlying 2-4 tree that is being sim-
ulated by the red-black tree?

Exercise 9.6. Show that, for arbitrarily large values of n, there exist se-
quences of add(x) and remove(x) operations that lead to red-black trees
with n nodes that have height 2logn−O(1).

207

§9.4 Red-Black Trees

h+2

h

h

h+2

h+1

Figure 9.10: Rebalancing in an AVL tree. At most two rotations are required to
convert a node whose subtrees have a height of h and h + 2 into a node whose
subtrees each have a height of at most h+ 1.

5

4

3

2

1

6

1197

8 12

10

Figure 9.11: A red-black tree on which to practice.

208

Discussion and Exercises §9.4

Exercise 9.7. Why does the method remove(x) in the RedBlackTree im-
plementation perform the assignment u.parent = w.parent? Shouldn’t
this already be done by the call to splice(w)?

Exercise 9.8. Suppose a 2-4 tree, T , has n` leaves and ni internal nodes.

1. What is the minimum value of ni , as a function of n`?

2. What is the maximum value of ni , as a function of n`?

3. If T ′ is a red-black tree that represents T , then how many red nodes
does T ′ have?

Exercise 9.9. Suppose you are given a binary search tree with n nodes
and a height of at most 2logn−2. Is it always possible to colour the nodes
red and black so that the tree satisfies the black-height and no-red-edge
properties? If so, can it also be made to satisfy the left-leaning property?

Exercise 9.10. Suppose you have two red-black trees T1 and T2 that have
the same black height, h, and such that the largest key in T1 is smaller
than the smallest key in T2. Show how to merge T1 and T2 into a single
red-black tree in O(h) time.

Exercise 9.11. Extend your solution to Exercise 9.10 to the case where the
two trees T1 and T2 have different black heights, h1 , h2. The running-
time should be O(max{h1,h2}).
Exercise 9.12. Prove that, during an add(x) operation, an AVL tree must
perform at most one rebalancing operation (that involves at most two ro-
tations; see Figure 9.10). Give an example of an AVL tree and a remove(x)
operation on that tree that requires on the order of logn rebalancing op-
erations.

Exercise 9.13. Implement an AVLTree class that implements AVL trees as
described above. Compare its performance to that of the RedBlackTree
implementation. Which implementation has a faster find(x) operation?

Exercise 9.14. Design and implement a series of experiments that com-
pare the relative performance of find(x), add(x), and remove(x) for the
SSet implemeentations SkiplistSSet, ScapegoatTree, Treap, and Red-
BlackTree. Be sure to include multiple test scenarios, including cases

209

§9.4 Red-Black Trees

where the data is random, already sorted, is removed in random order, is
removed in sorted order, and so on.

210

